欢迎来到高考01网!

学历解惑导航:
  • 大专
  • 留学
  • 成考
  • 专升本
  • 高考
  • 大学
  • 考研资讯
  • 当前位置:首页 学历解惑 高考 高考可以用什么公式

    高考可以用什么公式

    许老师所有文章
    许老师
    已认证
    十年磨剑穷文尽理今朝抒鸿鹄志,一旦试锋安国定邦他日成栋梁材。

    高考数学公式是解题的核心工具,以下为高频考点公式分类整理,结合函数、三角、数列等核心内容进行归纳:

    一、函数相关公式

    高考可以用什么公式

    一次函数:

    $y = kx + b$($k neq 0$),斜率$k$决定倾斜性,截距$b$为图象与$y$轴交点。

    二次函数:

    $y = ax^2 + bx + c$,对称轴公式$x = -frac{b}{2a}$,顶点坐标$(-frac{b}{2a}, f(-frac{b}{2a}))$。

    指数函数与对数函数:

    $y = a^x$($a > 0$)与$y = log_a x$互为反函数,指数函数单调性由$a$决定,对数函数性质包括$log_a 1 = 0$,$log_a a = 1$。

    二、三角函数公式

    同角三角函数关系:

    $sin^2alpha + cos^2alpha = 1$,$tanalpha = frac{sinalpha}{cosalpha}$。

    两角和与差公式:

    $sin(alpha pm beta) = sinalphacosbeta pm cosalphasinbeta$,$cos(alpha pm beta) = cosalphacosbeta mp sinalphasinbeta$。

    倍角公式:

    $sin 2A = 2sin Acos A$,$cos 2A = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A$,$tan 2A = frac{2tan A}{1 - tan^2 A}$。

    半角公式:

    $tanfrac{alpha}{2} = frac{1 - cosalpha}{sinalpha} = frac{sinalpha}{1 + cosalpha}$。

    高考可以用什么公式

    三、数列与方程

    一元二次方程:

    $ax^2 + bx + c = 0$,解为$x = frac{-b pm sqrt{b^2 - 4ac}}{2a}$,判别式$Delta = b^2 - 4ac$。

    韦达定理:

    若方程$ax^2 + bx + c = 0$的两根为$x_1, x_2$,则$x_1 + x_2 = -frac{b}{a}$,$x_1x_2 = frac{c}{a}$。

    数列求和:

    等差数列前$n$项和$S_n = frac{n(a_1 + a_n)}{2}$,等比数列前$n$项和$S_n = frac{a_1(1 - q^n)}{1 - q}$($q neq 1$)。

    四、几何与导数

    正弦定理:

    $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} = 2R$($R$为三角形外接圆半径)。

    余弦定理:

    $c^2 = a^2 + b^2 - 2abcos C$。

    导数应用:

    若$y = f(x)$,则$f'(x)$表示导数,$f''(x)$表示二阶导数,可用于判断单调性和凹凸性。

    高考可以用什么公式

    五、其他常用公式

    绝对值不等式:$|a + b| leq |a| + |b|$,$|a - b| geq ||a| - |b||$。

    对数运算法则:$log_a(MN) = log_a M + log_a N$,$log_afrac{M}{N} = log_a M - log_a N$。

    复习建议:公式需结合具体题型练习,例如函数单调性

    本文【高考可以用什么公式】由作者 许老师 提供。 该文观点仅代表作者本人, 高考01网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
    高考相关资讯