欢迎来到高考01网!

教育解读导航:
  • 职业培训
  • 学历
  • 数学应用
  • 学习方法
  • 语文探索
  • 当前位置:首页 教育解读 数学应用 二进制十进制怎么看

    二进制十进制怎么看

    起航所有文章
    起航
    已认证
    要向大的目标走去就得从小目标开始。

    二进制和十进制是两种常见的数制系统,以下是它们的核心区别及转换方法:

    一、数制基础

    二进制十进制怎么看

    二进制

    - 基数为2,仅包含0和1两个数字。 - 运算规则:逢二进一(例如:1+1=10,10+1=101)。 - 计算机内部存储和运算的基础数制。

    十进制

    - 基数为10,包含0-9共10个数字。 - 运算规则:逢十进一(例如:9+1=10,12+8=20)。 - 日常生活及人类最常用的数制。

    二、数制转换方法

    1. 二进制转十进制

    采用“除2取余法”:

    将二进制数从高位到低位依次除以2,记录每次的余数;

    将余数倒序排列,不足的补零;

    各位对应的权值(2ⁿ)相加即得十进制结果。 示例:

    将(1011)₂转换为十进制

    1. 1011 ÷ 2 = 50 余1

    2. 50 ÷ 2 = 25 余0

    3. 25 ÷ 2 = 12 余1

    二进制十进制怎么看

    4. 12 ÷ 2 = 6 余0

    5. 6 ÷ 2 = 3 余0

    6. 3 ÷ 2 = 1 余1

    7. 1 ÷ 2 = 0 余1

    倒序排列余数得:1001011,即(43)₁₀。

    2. 十进制转二进制

    采用“连续除基取余法”:

    将十进制数除以2,记录商和余数;

    将余数倒序排列,不足的补零;

    商继续除以2,重复上述步骤直至商为0。 示例:将23.375₂转换为十进制

    整数部分:23 ÷ 2 = 11 余1 → 11 ÷ 2 = 5 余1 → 5 ÷ 2 = 2 余1 → 2 ÷ 2 = 1 余0 → 1 ÷ 2 = 0 余1,倒序得10111;

    小数部分:0.375 × 2 = 0.75 取整0 → 0.75 × 2 = 1.5 取整1 → 0.5 × 2 = 1.0 取整1,组合得1.011,即(10111.011)₂。

    三、应用场景与注意事项

    计算机领域:二进制用于硬件电路和数据存储,八进制(每三位二进制对应一位八进制)和十六进制(每四位二进制对应一位十六进制)因便于人类阅读而常用作中间转换。

    二进制十进制怎么看

    其他进制转换

    八进制转二进制:每三位二进制对应一位八进制(不足补零);

    十六进制转二进制:每四位二进制对应一位十六进制(不足补零)。

    通过掌握上述转换方法,可灵活在不同数制间进行计算与表达。

    本文【二进制十进制怎么看】由作者 起航 提供。 该文观点仅代表作者本人, 高考01网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
    数学应用相关资讯